Preparation and Reactions of Masked Allylic Organozinc Reagents

Philip J ones and Paul K nochel*
Fachbereich Chemie der Philipps Universität Marburg, Hans-Meerwein Strasse,
D-35032 Marburg, Germany

Received August 11, 1998

Abstract

Allylic zinc reagents have been prepared from sterically hindered homoallylic alcohols $\mathbf{1 0}$ and $\mathbf{1 3}$, using a novel fragmentation reaction of the corresponding zinc alkoxide, without any homocoupling products. These allylic zinc reagents react with a range of electrophiles in good to excellent yields. Substituted allylic zinc reagents have also been prepared in this manner. α-Substituted homoallylic alcohols 37, 46, and 51 give solely α-substituted products after the fragmentation-allylation sequence; these products are obtained not only regioselectively but also with extremely high anti diastereoselectivity. Likewise, γ-substituted homoallylic al cohols 57 and $\mathbf{5 8}$, undergo the fragmenta-tion-allylation reaction to give γ-substituted products. The reaction has also been demonstrated to be catalytic in zinc salts.

Introduction

The use of organometallic reagents is today so commonplace that hardly any synthesis is now completed without the inclusion of at least one step involving an organometallic reagent, and often many more. One reaction of particular importance is the allylation of carbonyl compounds, and there has been extensive research in this area. ${ }^{1}$ Despite notable successes, the use of crotylchromium reagents for highly antiselective additions to aldehydes, ${ }^{2}$ the use of (Z)-crotylborates for the production of syn-homoallylic alcohols, ${ }^{3}$ and the reaction of crotyltins promoted by Lewis acids to produce syn-homoallylic alcohols, ${ }^{4}$ there remains several notable problems associated with these reagents. The classical method for the generation of allylic organometallics involves the reaction of an allyl halide with a metal; this method, due to the high reactivity of the resulting organometallic, results in a high proportion of the Wurtz homocoupling product. Second, to date, most reactions involving allylic organometallics are stoichiometric and generate at least 1 equiv of inorganic salts and waste. On a small scale this is irrelevant; however, on an industrial scale it becomes a major consideration.

We became aware of several reports in the literature whereby the addition of allylic metals to electrophiles is documented as being reversible. ${ }^{5-7}$ Two papers by Miginiac in particular fascinated us. ${ }^{7 a, b}$ In the first, ${ }^{7 a}$ it was reported how the addition of prenylzinc bromide $\mathbf{1}$ to 3-pentanone gave after 3 h at room temperature initially the α-disubstituted product 2 in 82% together with 18\% of the γ-disubstituted product 3 (Scheme 1); however, on warming the reaction to $60^{\circ} \mathrm{C}$ for 2 days, the reaction mixture isomerized entirely to the γ-disubstituted product 3, which was isolated in 50\% yield. In the second paper, the addition of 2-pentenylzinc bromide 4 to 2,6-dimethylheptan-4-one gave immediately the 56:44 mix-

[^0]

Scheme 1

ture of two homoallylic alcohols, 5 and $\mathbf{6 , 5}$, ${ }^{7 \mathrm{~b}}$ with the major being the α-substituted; however, upon being stirred for 12 h , the mixture gave, after hydrolysis, 80% yield of solely the γ-substituted isomer 6 .
We hypothesised that due to the reversibility of these reactions if we prepared a sterically hindered tertiary homoallylic alcohol 7, upon generation of a zinc alkoxide 8 we could initiate a fragmentation reaction to generate an allylic zinc regent 9 , which in the presence of a suitable electrophile could result in further synthetically useful reactions (Scheme 2). ${ }^{8}$

Results and Discussion

Accordingly, a pair of homoallylic alcohols, 10 and 13, with increasing steric hindrance were prepared and

[^1]Scheme 2

treated first with BuLi to form the lithium al koxide, and then ZnBr_{2} was added to give the zinc alkoxide (Scheme 3). The bis(isopropyl) alkoxide $\mathbf{1 1}$ was stable at room temperature; however, at $70^{\circ} \mathrm{C}$, this species fragmented to give an allylic zinc reagent in situ, which in the presence of benzaldehyde gave the benzylic alcohol $\mathbf{1 2}$ in 70% yield. The reaction could be improved by the addition of a cosolvent. In the presence of HMPA, the reaction was complete within 6 h to give 98% isolated yield of the benzylic alcohol 12. However, we were delighted to find that the reaction using the bis(tert-butyl) alcohol $\mathbf{1 3}$ was far superior, with the fragmentation occurring in minutes at room temperature in only THF to give the benzylic al cohol $\mathbf{1 2}$ in 89% yield after 2 h . In both cases, no migration was observed using the corresponding lithium or magnesium alkoxides.

Inspired by this reaction, the scope of this procedure was investigated with a series of aldehydes and ketones (Table 1). Aromatic aldehydes, as well as aliphatic aldehydes, reacted well. The reaction with heptanal gives the homoallylic al cohol 15 in 83% yield (entry 1). Likewise, α, β-unsaturated aldehydes were tolerated, giving solely the product of 1,2-addition, 16 (entry 2). α-Substituted aldehydes caused no problems, with cyclohexanecarboxaldehyde and 2-phenylpropionaldehyde both giving the desired homoallylic alcohols, 17 and 18, in good yields (entries 3 and 4). The reaction also proceeded well with ketones; however, a slightly longer reaction time, $2-4 \mathrm{~h}$, was required to ensure the reaction went to completion. Treatment of cyclohexanone gave the tertiary alcohol 19 in 82\% (entry 5), while 3-methylcyclohex-2-en-1-one gave the allylic al cohol 20 in 74% yield (entry 6). Benzylidene acetone and α-tetralone al so gave good yields of the desired products (entries 7 and 8).

Having established the principle of retro-allylation/ allylation from the sterically hindered zinc alkoxide 14, we can consider this alkoxide as being a masked allylzinc reagent. We have now studied the scope of the reactivity of 14 and have examined if it would behave as a typical allylzinc reagent and undergo si milar reactions. ${ }^{9}$ Consequently, the homoallylic alcohol $\mathbf{1 3}$ was transformed to its zinc alkoxide 14 and reacted with benzonitrile; the

[^2]Table 1. Reaction of $\mathbf{1 3}$ with Carbonyl Compounds
Entry Aldehyde
a I solated yield of analytically pure products. ${ }^{\text {b }}$ Isolated as a 3:1 mixture syn/anti.

Scheme 4

appearance of bis(tert-butyl)ketone revealed the desired fragmentation had occurred, and we were delighted to find, upon mild acid work up, that the β, γ-unsaturated ketone 23 had been obtained in 73\% yield (Scheme 4). Further reactions with 4-bromobenzonitrile and 4-chlorobutyronitrile gave the desired ketones 24 and $\mathbf{2 5}$ in 74\% and 62% yields, respectively.

We also predicted that homoallylic amines could be prepared upon reaction with imines. Indeed, the zinc alkoxide 14 was treated with benzylidenebutylamine 26, and after 2 h , the benzylamine 27 was obtained in 97\% isolated yield (eq 1).

Table 2: Reaction of $\mathbf{1 3}$ with Imines
Entry
a Isolated yield of analytically pure products.

Further reactions with α, β-unsaturate imines $\mathbf{2 8}$ (Table 2, entry 1) al so proceeded well giving the 1,5-dienylamine 29 in 90\% yield. Enolizable imines, 30 and 32, reacted in moderate yield to give the benzylamines 31 and 33, both in 63% isolated yield (entries 2 and 3). The reaction also proceeded with an imine of a ketone; reaction with benzyl(1-phenylethylidene)amine 34 gave the secondary amine 35 in 67% yield.

Another reaction of considerable synthetic importance is the carbozincation of carbon-carbon multiple bonds; ${ }^{9 c}$ we have examined if the masked zinc reagent 14 could add to an alkyne. In turn, the tertiary alcohol $\mathbf{1 3}$ was treated with BuLi, then ZnCl_{2}, and finally trimethylsilylprotected propargyl alcohol (eq 2). Upon hydrolysis the 1,4-dienol, 36 was isolated in 74\% yield, further demonstrating the synthetic utility of this approach.

36: 74%
Having developed this mild and clean method for the introduction of allylic groups into a range of molecules, we have examined the effect of substituents on the allyl group. We hoped that the study would give us some mechanistic insight into this reaction. Substituted allylzinc reagents had previously been prepared by Tamura from allyl benzoates. ${ }^{10}$ We hoped that our mild method would give improved selectivities.

Accordingly, the tertiary homoallylic al cohol 37 bearing a methyl in the α-position was prepared and treated with n-BuLi at room temperature. However, we were disappointed to find that a rapid isomerization occurred to give the γ-substituted isomer $\mathbf{3 8}$ (Scheme 5). Undeterred, the deprotonation was attempted at $-78^{\circ} \mathrm{C}$, and using these conditions, no isomerization was observed. Addition of benzaldehyde followed by a solution of zinc chloride gave, within 1 h at $-78{ }^{\circ} \mathrm{C}$, the benzylic alcohol 39 in 83% isolated yield. More interestingly, the product was isolated as a 94:6 mixture of anti/syn diastereomers. ${ }^{11}$ This

[^3]

40: $84 \%, 96: 4$ anti:syn

42: $76 \%, 97: 3$ anti:syn

44: $84 \%, 83: 17$ anti:syn

41: $86 \%,>98: 2$ anti:syn

43: $92 \%,>98: 2$ anti:syn

45: $90 \%, 78: 22$ anti:syn

Figure 1.

Scheme 5

is in strong contrast to the addition of crotylzinc bromide to an aldehyde, which occurs with essentially no diastereoselectivity. ${ }^{12}$

Pleased by this finding, further synthetic investigations were carried out using a range of aldehydes and ketones (Figure 1). Saturated aldehydes, cyclohexanecarboxaldehyde and 2-ethylbutyraldehyde were excellent substrates giving the desired homoallylic al cohols 40 and 41 in good yields and excellent selectivities, 96:4 and >98:2, respectively. While 2-butylacrolein also reacted cleanly giving the 1,5-dien-3-ol 42 in 76\% yield and a 97:3 diastereomeric excess. Aromatic aldehydes also provided the desired products, and the reaction with 1-naphthylaldehyde and furfural gave the desired al cohols 43 and 44 in good yields. Similarly, the reaction with acetophenone proceeded in good yield (90\%) to give the tertiary al cohol 45, but in moderate selectivity, 78:22 syn/anti. In all cases, none of the γ-substituted isomer was detected.
Following the success with the α-methyl-substituted reagent, we were interested to find whether other substitutes could be tolerated in the α-position. Therefore, the α-ethyl isomer 46 was prepared (Scheme 6) and treated with n-BuLi, benzaldehyde, and zinc chloride. As in the case of the α-methyl isomer 37, the desired al cohol 47 was isolated in good yield starting from α-ethyl homallylic al cohol 46, 91\% yield as a $91: 9$ mixture of anti/ syn diastereomers. Further reactions with cyclohexanecarboxaldehyde and 2-ethyl butyraldehyde gave rise to the homoallylic al cohols 48 and 49 in 83\% and 81\% yields, respectively; in both cases only the anti-diastereomer was detected.

Further synthetic investigations also revealed that a substituent could easily be incorporated into the α-posi-
(12) Wilson, S. R.; Guazzaroni, M. E. J . Org. Chem. 1989, 54, 30873091.

Scheme 6

Scheme 7

52: 89 \%, $95: 5$ anti:syn

53: $88 \%,>98: 2$ anti:syn

54: $80 \%,>98: 2$ anti:syn
tion of the homoallylic alcohol using an alkylation sequence. 2,2-Dimethylhex-5-en-3-one 50 was readily deprotonated with LDA at $-78^{\circ} \mathrm{C}$ and subsequently al kylated in the α-position with benzyl bromide in THF/ HMPA in 65\% isolated yield. Subsequent reaction with t-BuLi gave the required homoallylic alcohol 51 in 85\% yield. As in the previous cases, deprotonation, transmetalation, and reaction with benzaldehyde gave the desired benzylic alcohol 52 in 89\% yield, again with excellent diastereoselectivity, 95:5. Other aldehydes also reacted well, giving the homoallylic alcohols 53 and 54 in 88\% and 80\% yields, respectively, both with excellent anti selectivity (Scheme 7).

Pleasantly surprised by these results, we were interested to investigate the outcome of placing substituents into the γ-position of the allylic system; however, a new preparation method was needed. Consequently, oxirane 55 was prepared and opened with a variety of lithium acetylides to give the propargyl al cohols 56a and 56b in reasonable yields, 84\% and 65\% (Scheme 8). Hydrogenation with palladium on barium sulfate gave the Z isomer 57 quantitatively, while treatment with LiAlH_{4} gave the required E isomer 58 . We were now in a position to investigate the migration of these species. However, on generation of the zinc alkoxides, these species were found to be much less reactive. Whereas the α-substituted system migrated at $-78{ }^{\circ} \mathrm{C}$, these compounds were unreactive below room temperature. Using 57, after 48 h at room temperature, migration had only occurred in 52% yield (86% based on recovered starting material) to give the desired homoallylic alcohol 59, while the E isomer 58 gave the corresponding al cohol $\mathbf{6 0}$ in 23\% yield

Scheme 8

after 12 h (87\% based on recovered starting material). In both cases, the products were isolated as 2:1 mixtures of E / Z isomers. The γ-disubstituted system 61 was also prepared, but the zinc alkoxide of this species was found to be inert and no migration was observed, even in refluxing THF.

On the basis of these observations, we feel that we can make a mechanistic proposal involving a double allylic transposition pathway (Scheme 9). Generation of the zinc alkoxide complexed by the aldehyde, RCHO, gives an intermediate 62. Allylic transposition in a cyclic transition state gives rise to a crotyl zinc reagent $\mathbf{6 3}$ complexed to the parent bis(tert-butyl)ketone and the reaction partner, the crotylzinc bearing solely an (E) configuration. At $-78{ }^{\circ} \mathrm{C}$, this allylic species seems to be stable and undergoes no isomerization. ${ }^{13}$ After reorganization of the ligand sphere leading to 64, the second allylic transposition gives rise to the product 65, predominately as the anti diastereomer. Compared to the standard nondias-

[^4]
tereoselective reaction of crotylzinc bromide with an aldehyde, this procedure appears to have the advantage of generating pure (E)-crotylzinc in the presence of the electrophile and therefore avoids an isomerization of the crotyl rest. This mechanism is supported by the unreactive nature of the γ-substituted homoallylic alcohols, whereby substitution on the γ-position prevents the first allylic transposition from occurring.

Despite the success of these reactions as a means of generating substituted allylic zinc reagents, one problem remained, that being the stoichiometric amount of zinc utilized in these reactions. We thought it may be possible to use catalytic quantities of zinc salts, as the zinc could shuttle between the sterically hindered zinc alkoxide, through the fragmentation, to give the allylic zinc reagent and then the subsequent product. This zinc alkoxide could then react with the lithium alkoxide of the tertiary alcohol completing the catalytic cycle. Indeed, when the reaction was carried out using $50 \mathrm{~mol} \%$ of ZnBr_{2}, the benzylic alcohol $\mathbf{1 2}$ was isolated in 95% yield (Scheme 10). Further reductions in the zinc salts to $10 \mathrm{~mol} \%$ gave the benzylic alcohol $\mathbf{1 2}$ in 92\% yield. So far, we have been unable to make the reaction catalytic in a base, but further investigations are underway.

In summary, we have developed a novel fragmenta-tion-allylation reaction of sterically hindered homoallylic alcohols to generate allylic zinc reagents in situ, without any Wurtz coupling products. The resulting allylic organozinc reagents react with a range of electrophiles to give the desired products in good to excellent yields. Substituted allylic organometallics can be prepared using this procedure, and they have been shown to be extremely regioselective. Excellent antidiastereoselectivities can be obtained in the fragmentation-allylation reaction from α-substituted homoallylic alcohols. ${ }^{14,15}$

Experimental Section

Reactions were monitored by gas chromatography (GC) analysis of reaction aliquots. The ionization methods used for the performance of mass spectra were desorption chemical ionization (CI) and electron impact ionization (EI). THF was dried and freshly distilled over sodium/benzophenone, and HMPA was distilled from calcium hydride. Zinc chloride and zinc bromide were freshly dried before use for 2 h at $140{ }^{\circ} \mathrm{C}$ and less than 0.1 mmHg .

The following were prepared by known literature procedures: 3-isopropyl-2-methylhex-5-en-3-ol, 10, ${ }^{16}$ 3-tert-butyl-2,2-dimethylhex-5-en-3-ol, 13, ${ }^{16}$ benzylidenebutylamine, 26, ${ }^{17}$ ben-zyl(3-methylbut-2-enylidene)amine, 28, ${ }^{18}$ benzylhexylideneamine, 30, ${ }^{19}$ benzyl cycl ohexyl methyleneamine, 32, ${ }^{20}$ benzyl-

[^5](1-phenylethylidene)amine, 34, ${ }^{21}$ crotonic acid chloride, ${ }^{22}$ 2,2di (tert-butyl)oxirane, 55, ${ }^{23}$ 2,2,6-trimethyl hept-5-en-3-one. ${ }^{24}$

Standard Preparation A, Addition of 13 to Carbonyl Compounds and Other Electrophiles. 1-Phenylbut-3-en-1-ol (12). A solution of BuLi (2.71 mmol) in pentane (1.40 M , 1.94 mL) was added dropwise over 2 min to a stirred sol ution of $\mathbf{1 3}(500 \mathrm{mg}, 2.71 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The resulting solution was then stirred for 15 min , and a solution of $\mathrm{ZnBr}_{2}(610 \mathrm{mg}, 2.71 \mathrm{mmol})$ in THF (2 mL) was added, followed by benzaldehyde ($275 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$). The reaction was allowed to warm to room temperature and stirred for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ sol ution (15 mL) was added, and the reaction was worked up as usual. The crude residue was purified by column chromatography on silica using 15% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{25}$ ($356 \mathrm{mg}, 89 \%$) as a colorless oil: IR (film) $3391 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=7.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.04$ (broad s, 1H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.82,134.41$, 128.36, 127.48, 125.77, 118.34, 73.25, 43.77; m/z (EI-MS) 107 ($\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 100 \%, \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$ requires 107). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 81.05 ; \mathrm{H}, 8.16 \%$. Found: C, 80.89; H, 8.13%.

Dec-1-en-4-ol (15). The reaction was carried out according to standard procedure A using 13 ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), heptanal ($379 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$), and ZnBr_{2} (610 $\mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the alcohol ${ }^{12}$ ($349 \mathrm{mg}, 83 \%$) as a col orless oil: IR (film) $3362 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.04 (m, 2H), 1.78-1.70 (m, 1H), 1.50-1.20 (m, 9H) $0.93-0.82(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 134.91, 117.90, 70.63, 41.89, 36.77, 31.77, 29.28, 25.58, 22.56, 14.02; m/z (EIMS) 115 ($\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 18 \%, \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}$ requires 115), 55 (100\%). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 76.86 ; \mathrm{H}, 12.90 \%$. Found: $\mathrm{C}, 76.52$; H, 12.72\%.

2-Methylhept-2,6-dien-4-ol (16). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71$ mmol), BuLi (2.71 mmol), 3-methylbut-2-enal ($261 \mu \mathrm{~L}, 2.71$ mmol), and $\mathrm{ZnBr}_{2}(610 \mathrm{mg}, 2.71 \mathrm{mmol})$ to give a crude residue, which was then purified by column chromatography on silica using $15-25 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{26}$ ($286 \mathrm{mg}, 84 \%$) as a colorless oil: IR (film) $3353 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.39(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.36$, 134.53, 127.19, 117.78, 67.71, 42.15, 25.70, 18.21; m/z (EI-MS) 108.0943 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}^{+}, 5 \%, \mathrm{C}_{8} \mathrm{H}_{12}$ requires 109.0939), 93 (100\%).

1-Cyclohexylbut-3-en-1-ol (17). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71$ $\mathrm{mmol})$, BuLi (2.71 mmol), cycl ohexanecarboxal dehyde ($328 \mu \mathrm{~L}$, 2.71 mmol), and ZnBr_{2} ($610 \mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{27}$ ($342 \mathrm{mg}, 82 \%$) as a colorless oil: IR (film) $3397 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.45-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.03(\mathrm{~m}$,

[^6]1H), 1.95-0.90 (m, 11H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.45$, 117.83, 74.69, 43.02, 38.75, 29.03, 28.06, 26.46, 26.23, 26.08; $\mathrm{m} / \mathrm{z}(\mathrm{EI}-\mathrm{MS}) 113\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 23 \%, \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}\right.$ requires 113), 95 (100\%). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 77.87 ; \mathrm{H}, 11.76 \%$. F ound: C, 77.63; H, 11.84\%.
syn-2-Phenylhex-5-en-3-ol and anti-2-Phenylhex-5-en-3-ol (18). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), 2-phenylpropionaldehyde ($360 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$), and $\mathrm{ZnBr}_{2}(610$ $\mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the alcohol ${ }^{28}$ ($404 \mathrm{mg}, 85 \%$) as an inseparable mixture of diastereomers (syn/anti 3:1). IR (film) $3426 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.13$ (m, 5H), 5.99-5.67 (m, 1H), 5.19-5.02 (m, 2H), 3.78-3.62 (m, 1H), 2.88-2.72 (m, 1H), 2.45-1.70 (m, 2H), 1.40-1.25 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major di astereomer) $\delta 144.36,135.04$, 128.41, 127.72, 126.38, 117.99, 74.95, 45.32, 39.46, 16.34, (minor diastereomer) $\delta 143.23,135.00,128.13,126.60,117.60$, 38.89, 17.66; m/z (EI-MS) 176 ($\mathrm{M}^{+}, 1 \%, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$ requires 176), 106 (100\%). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15\%. Found: C, 81.61; H, 8.92\%.

1-Allylcyclohexanol (19). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71$ $\mathrm{mmol})$, BuLi (2.71 mmol), cyclohexanone ($280 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$), and $\mathrm{ZnBr}_{2}(610 \mathrm{mg}, 2.71 \mathrm{mmol})$ over 4 h to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{12}$ ($325 \mathrm{mg}, 82 \%$) as a colorless oil: IR (film) $3393 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.02(\mathrm{~m}, 2 \mathrm{H})$, 2.20 (dt, J = 7.5, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.70-1.38 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.69,118.54,70.87,46.65,37.32,25.71$, 22.11; $\mathrm{m} / \mathrm{z}(\mathrm{EI}-\mathrm{MS}) 99\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 100 \%, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}\right.$ requires 99). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.09 ; \mathrm{H}, 11.50 \%$. Found: $\mathrm{C}, 77.08$; H, 11.23\%.

1-Allyl-3-methylcyclohex-2-enol (20). The reaction was carried out according to standard procedure A using 13 (500 $\mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), 3-methylcycl ohex-2-en-1one ($307 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$), and ZnBr_{2} ($610 \mathrm{mg}, 2.71 \mathrm{mmol}$) over 4 h to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{29}$ ($305 \mathrm{mg}, 74 \%$) as a colorless oil: IR (film) $3374 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.76$ (m, 1H), 5.35 (broad s, 1H), 5.16-5.04 (m, 2H), 2.27 (dt, J = $7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.15,133.93,126.72,118.31,69.67,46.96$, $35.14,30.13,23.68,19.17$; m/z (EI-MS) 134 (M-H2O ${ }^{+}, 98 \%$, $\mathrm{C}_{10} \mathrm{H}_{14}$ requires 134), 91 (100\%). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}$, 78.90 ; H, 10.59%. Found: C, 78.75 ; H, 10.82%.
(E)-3-Methyl-1-phenylhex-1,5-dien-3-ol (21). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), benzylideneacetone ($396 \mathrm{mg}, 2.71 \mathrm{mmol}$), and ZnBr_{2} ($610 \mathrm{mg}, 2.71 \mathrm{mmol}$) over 4 h to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{25}$ ($373 \mathrm{mg}, 73 \%$) as a colorless oil: IR (film) $3409 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.15$ $(\mathrm{m}, 5 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.06(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.00 (broad s, 1H), $1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.78, 136.10, 133.50, 128.46, 127.28, 126.32, 119.15, 72.26, 47.22, 27.81; m/z (EI-MS) 188 ($\mathrm{M}^{+}, 1 \%, \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ requires 188), 147 (100\%). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$: C, 82.94; H, 8.57\%. Found: C, 82.85; H, 8.87\%.

1-Allyl-1,2,3,4-tetrahydronaphthalen-1-ol (22). The reaction was carried out according to standard procedure A using 13 ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), α-tetral one (360 $\mu \mathrm{L}, 2.71 \mathrm{mmol}$), and $\mathrm{ZnBr}_{2}(610 \mathrm{mg}, 2.71 \mathrm{mmol})$ over 4 h to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an

[^7]eluent to give the alcohol ${ }^{30}$ ($500 \mathrm{mg}, 99 \%$) as a colorless oil: IR (film) $3416 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.03(\mathrm{~m}, 3 \mathrm{H}), 5.91-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.04(\mathrm{~m}$, $2 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dt}, \mathrm{J}=7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-$ $1.70(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.81,136.73$, 133.99, 128.82, 127.10, 126.32, 126.19, 118.56, 71.89, 46.97, 36.03, 29.70, 19.65; m/z (EI-MS) 170.1095 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}^{+}, 3 \%$, $\mathrm{C}_{13} \mathrm{H}_{14}$ requires 170.1093), 147 (100%).

Standard Procedure B, Addition of 13 to Nitriles. 1-Phenylbut-3-en-1-one (23). A solution of BuLi (2.71 mmol) in pentane ($1.40 \mathrm{M}, 1.94 \mathrm{~mL}$) was added dropwise over 2 min to a stirred solution of $\mathbf{1 3}(500 \mathrm{mg}, 2.71 \mathrm{mmol})$ in THF (4 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting solution was then stirred for 15 min , and then a solution $\mathrm{ZnCl}_{2}(370 \mathrm{mg}, 2.71 \mathrm{mmol})$ in THF (2 mL) was added, followed by benzonitrile ($278 \mu \mathrm{~L}, 2.71$ $\mathrm{mmol})$. The reaction was allowed to warm to room temperature and stirred for 1 h . A solution of $0.25 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ were added, and the resulting mixture was stirred vigorously for 10 min . The reaction was worked up as usual to give a crude residue, which was purified by column chromatography on silica using 5\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the ketone ${ }^{31}$ ($289 \mathrm{mg}, 73 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.42(\mathrm{~m}, 3 \mathrm{H})$, $6.20-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dt}, \mathrm{J}=6.8,1.5$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.91, 136.47, 133.08, 130.97, 128.53, 128.19, 118.61, 43.34.

1-(4-Bromophenyl)but-3-en-1-one (24). The reaction was carried out according to standard procedure B using 13 (500 $\mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), 4-bromobenzonitrile (493 $\mathrm{mg}, 2.71 \mathrm{mmol})$, and $\mathrm{ZnCl}_{2}(370 \mathrm{mg}, 2.71 \mathrm{mmol})$ to give a crude residue, which was then purified by column chromatography on silica using 5\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the ketone ${ }^{32}$ ($320 \mathrm{mg}, 74 \%$), which crystallized on standing: IR (film) $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (d, J $=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.16(\mathrm{~m}$, $2 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.90, 135.18, 131.89, 130.59, 129.76, 128.31, 118.97, 43.32; m / z (EI-MS) 223.9837 ($\mathrm{M}^{+}, 7 \%, \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}$ requires 223.9837), 69 (100).
1-Chlorohept-6-en-4-one (25). The reaction was carried out according to standard procedure B using 13 ($500 \mathrm{mg}, 2.71$ mmol), BuLi (2.71 mmol), 4-chlorobutyronitrile ($242 \mu \mathrm{~L}, 2.71$ mmol), and ZnCl_{2} ($370 \mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using 5\% $\mathrm{Et}_{2} \mathrm{O}$ - hexanes as an eluent to give the ketone ${ }^{33}$ (238 $\mathrm{mg}, 62 \%$) as a colorless oil: IR (film) $1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}$, $\mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{dt}, \mathrm{J}=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.03 (app. quintet, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 207.41,130.26,119.02,47.82,44.33,38.75,26.13$; $\mathrm{m} / \mathrm{z}(E I-M S) 146\left(\mathrm{M}^{+}, 0.3 \%, \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{ClO}\right.$ requires 146), 41 (100).
Butyl-(1-phenylbut-3-enyl)amine (27). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ (500 $\mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), benzylidenebutylamine 26 ($436 \mathrm{mg}, 2.71 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(370 \mathrm{mg}, 2.71 \mathrm{mmol})$ to give a crude residue, which was then purified by removal of the bis-(tert-butyl)ketone under reduced pressure, $<0.1 \mathrm{~mm} \mathrm{Hg}$ for 3 h, to give the amine ${ }^{34}(534 \mathrm{mg}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.84-5.60(\mathrm{~m}, 1 \mathrm{H})$, $5.15-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 144.13,135.55,128.26,127.13,126.87,117.40,62.66$, 47.41, 43.03, 32.28, 20.44, 13.96; m/z (EI-MS) $162\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}\right.$, $100 \%, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}$ requires 162).
(1-Allyl-3-methylbut-2-enyl)benzylamine (29). The reaction was carried out according to standard procedure A using

[^8]13 ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), benzyl-(3-methyl-but-2-enylidene)amine $\mathbf{2 8}$ ($468 \mathrm{mg}, 2.71 \mathrm{mmol}$), and ZnCl_{2} (370 $\mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by col umn chromatography on silica using 25-100\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the amine ${ }^{35}$ ($522 \mathrm{mg}, 90 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.16$ (m, $5 \mathrm{H}), 5.87-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.15-4.97(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.75,135.53,133.82$, $128.24,128.06,127.85,126.66,116.93,54.53,51.19,40.57$, 25.81, 18.33; m/z (EI-MS) 174 ($\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 68 \%, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}$ requires 174), 91 (100%).
(1-Allylhexyl)benzylamine (31). The reaction was carried out according to standard procedure A using 13 ($500 \mathrm{mg}, 2.71$ $\mathrm{mmol})$, BuLi (2.71 mmol), benzylhexylideneamine $\mathbf{3 0}$ (512 mg , 2.71 mmol), and $\mathrm{ZnCl}_{2}(370 \mathrm{mg}, 2.71 \mathrm{mmol})$ to give a crude residue, which was then purified by column chromatography on silica using $20-35 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the amine ${ }^{36}$ ($393 \mathrm{mg}, 63 \%$) as a colorless oil: IR (film) 3442 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.15$ (m, 5H), 5.90$5.65(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.67-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.35-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 140.82,135.80,128.30$, 128.11, 126.76, 117.07, 56.14, 51.15, 38.33, 33.83, 32.06, 25.36, 22.63, 14.04; m/z (EI-MS) $190\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 43 \%, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}\right.$ requires 190), 91 (100\%). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}$: C, 83.06; H, 10.89; N, 6.05%. Found: C, 82.81 ; H, 11.04; N, 6.06%.

Benzyl-(1-cyclohexylbut-3-enyl)amine (33). The reaction was carried out according to standard procedure A using 13 ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), benzylcycl ohexyImethyleneamine 32 ($545 \mathrm{mg}, 2.71 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(370 \mathrm{mg}$, 2.71 mmol) to give a crude residue, which was then purified by column chromatography on silica using $15-40 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the amine ${ }^{37}$ ($414 \mathrm{mg}, 63 \%$) as a colorless oil: IR (film) $3330 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.95-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.01(\mathrm{~m}, 2 \mathrm{H})$, $3.75(\mathrm{~s}, 2 \mathrm{H}), 2.48-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.87-0.83(\mathrm{~m}, 11 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.09,136.66,128.24,128.14,126.70$, 116.76, 61.24, 51.90, 40.57, 35.28, 29.41, 28.83, 26.81, 26.69, 26.24; m/z (EI-MS) $202\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}, 64 \%, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}\right.$ requires 202), 91 (100\%).

Benzyl-(1-methyl-1-phenylbut-3-enyl)amine (35). The reaction was carried out according to standard procedure A using $\mathbf{1 3}$ ($500 \mathrm{mg}, 2.71 \mathrm{mmol}$), BuLi (2.71 mmol), benzyl ($1-$ phenylethylidene)amine 34 ($567 \mathrm{mg}, 2.71 \mathrm{mmol}$), and ZnCl_{2} ($370 \mathrm{mg}, 2.71 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the amine ${ }^{37}$ ($458 \mathrm{mg}, 67 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.91(\mathrm{~m}, 1 \mathrm{H})$, 7.60-7.16 (m, 9H), 5.78-5.55 (m, 1H), 5.16-5.02 (m, 2H), 3.60-3.40 (m, 2H), 2.65-2.40 (m, 2H), 1.49 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.57,141.23,134.21,133.02,128.51$, $128.26,128.12,128.06,126.68,126.29,118.15,58.27,47.38$, 46.89, 25.59; m/z (EI-MS) $162\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{5}{ }^{+}, 100 \%, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}\right.$ requires 162).

2-Methylenepent-4-en-1-ol (36). A solution of BuLi (5.4 mmol) in pentane ($1.40 \mathrm{M}, 3.9 \mathrm{~mL}$) was added dropwise over 5 min to a stirred solution of $\mathbf{1 3}(1.0 \mathrm{~g}, 5.4 \mathrm{mmol})$ in THF (8 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting solution was stirred for 15 min , and then a sol ution of $\mathrm{ZnCl}_{2}(741 \mathrm{mg}, 5.4 \mathrm{mmol}$) in THF (2 mL) was added, followed by trimethylprop-2-ynyloxysilane ($347 \mathrm{mg}, 2.71 \mathrm{mmol}$) in THF (1 mL). The reaction was allowed to warm to room temperature and stirred for 2 h . The reaction mixture was poured into 2 N HCl solution (10 mL) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and stirred for 15 min , before being worked up as usual to give a crude residue, which was then purified by column chromatography on silica using $25 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes

[^9]as an eluent to give the al cohol ${ }^{38}$ ($202 \mathrm{mg}, 74 \%$) as a colorless oil: IR (film) $3333 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.93-$ $5.71(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.06-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}$, $\mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.22,135.70,116.49,110.45,65.59,37.55$.

3-tert-Butyl-2,2,4-trimethylhex-5-en-3-ol (37). Crotyl chloride ($9.7 \mathrm{~mL}, 0.10 \mathrm{~mol}$) in THF (10 mL) was added dropwise over 20 min to magnesium ($2.48 \mathrm{~g}, 0.1 \mathrm{~mol}$) in THF (50 mL) at $0^{\circ} \mathrm{C}$ under argon. Upon complete addition, the reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then warmed to room temperature and stirred for 30 min , before being cooled to $0^{\circ} \mathrm{C}$. Pivaldehyde ($5.5 \mathrm{~mL}, 50 \mathrm{mmol}$) in THF (10 mL) was then added dropwise over 10 min , warmed to room temperature, and stirred for a further 30 min . The reaction was quenched cautiously with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$ and worked up as usual.

Chromic acid (prepared from $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g}, 33.5$ mmol), concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(7.5 \mathrm{~mL}, 0.13 \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(50$ mL)) was added dropwise over 30 min to a stirred solution of the crude alcohol in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, maintaining the internal temperature bel ow $30^{\circ} \mathrm{C}$. Upon complete addition, the reaction was stirred at room temperature for 2 h . The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and then combined and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL). The resulting solution was dried and then concentrated under reduced pressure to give the crude ketone.

The crude ketone in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise over 15 min to a stirred solution of t -BuLi (70 mmol) in pentane ($1.48 \mathrm{M}, 47.3 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ under argon. The mixture was then stirred for 1.5 h at $-78{ }^{\circ} \mathrm{C}$ and quenched by careful addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 50 \mathrm{~mL}$), and the combined organic extracts were washed with brine (50 mL), dried, and concentrated under reduced pressure. The mixture was purified by distillation, $70-71{ }^{\circ} \mathrm{C}$, 1 mmHg , to yield the al cohol ${ }^{5 \mathrm{~b}}$ ($6.51 \mathrm{~g}, 65 \%$) as a col orless oil: IR (film) $3578 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20-6.01$ $(\mathrm{m}, 1 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.16 (s, 9H), $1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 143.88,116.16,80.33,46.13,43.46,43.07,30.11$, 49.66, 19.67; m/z (EI-MS) $143\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}, 3 \%, \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}\right.$ requires 143), 57 (100\%). Anal. Cal cd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}: ~ \mathrm{C}, 78.72$; $\mathrm{H}, 13.21 \%$. Found: C, 78.82; H, 13.00\%.
Standard Procedure C, Addition of Substituted Allylic Zinc Reagents to Electrophiles. anti-2-Methyl-1-phenyl-3-buten-1-ol (39). A solution of n-BuLi (2.52 mmol) in pentane $(1.60 \mathrm{M}, 1.58 \mathrm{~mL})$ was added dropwise over 5 min to a stirred solution of $37(500 \mathrm{mg}, 2.52 \mathrm{mmol})$ in THF (4 mL) at $-78^{\circ} \mathrm{C}$ under argon. The resulting solution was stirred for 15 min , at which time PhCHO ($256 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$) was added, and stirred for a further 15 min . Finally, a solution of ZnCl_{2} (343 $\mathrm{mg}, 2.52 \mathrm{mmol}$) in THF (2 mL) was added over 3 min . The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h then allowed to warm to room temperature. The reaction was worked up as described previously in standard procedure A to give a crude residue, which was then purified by column chromatography on silica using $10 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{39}$ ($341 \mathrm{mg}, 83 \%$) as a pale-yellow oil: IR (film) $3418 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.90-5.70(\mathrm{~m}$, 1H), 5.23-5.12 (m, 2H), 4.33 (dd, J $=7.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-$ $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.29$ (broad s, 1H), $0.85(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.39,140.58,128.14,127.53$, 126.76, 116.66, 78.26, 46.66, 16.92; m/z (EI-MS) 162 (M-OH ${ }^{+}$, $1 \%, \mathrm{C}_{11} \mathrm{H}_{13}$ requires 145), 107 (100\%). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 81.44 ; \mathrm{H}, 8.70 \%$. Found: C, $81.35 ; \mathrm{H}, 8.56 \%$.
anti-1-Cyclohexyl-2-methyl-3-buten-1-ol (40). The reaction was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), cyclohexane carboxal dehyde ($304 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$), and ZnCl_{2} ($343 \mathrm{mg}, 2.52$ mmol) to give a crude residue, which was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes

[^10]as an eluent to give the al cohol ${ }^{39}$ ($356 \mathrm{mg}, 84 \%$) as a col orless oil: IR (film) $3396 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88-$ $5.68(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.10($ app. $\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.10(\mathrm{~m}, 11 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.31,115.97,78.75,40.44$, 40.25, 29.89, 27.00, 26.42, 26.37, 26.06, 16.90.
anti-3-Methyl-5-ethyl-1-hepten-4-ol (41). The reaction was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), 2-ethyl butyral dehyde ($310 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(343 \mathrm{mg}, 2.52 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $8 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{40}$ ($340 \mathrm{mg}, 86 \%$) as a colorless oil: IR (film) 3458 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.19-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.36$ (app. sextet, $\mathrm{J}=7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.65-1.15(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.84$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.03,116.21,75.42$, 42.84, 41.40, 22.34, 20.27, 11.75, 11.32; m/z (EI-MS) 101 (M$\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}, 40 \%, \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$ requires 101), 59 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 76.86 ; \mathrm{H}, 12.99 \%$. Found: C, $76.60 ; \mathrm{H}, 12.97 \%$.
anti-3-Methyl-5-methylenyInon-2-en-4-ol (42). The reaction was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), 2-butylacrolein (335 $\mu \mathrm{L}, 2.52 \mathrm{mmol})$, and $\mathrm{ZnCl}_{2}(343 \mathrm{mg}, 2.52 \mathrm{mmol})$ to give a crude residue, which was then purified by column chromatography on silica using $8 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ($321 \mathrm{mg}, 76 \%$) as a col orless oil: IR (film) $3441 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.21-4.87$ $(\mathrm{m}, 4 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.79($ broad s, 1H), 1.56-1.28 (m, 4H), 1.04$0.86(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.68,140.38$, 116.41, 111.29, 79.18, 41.89, 30.45, 30.00, 22.66, 16.68, 13.98; m / z (EI-MS) $113\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}, 20 \%, \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}\right.$ requires 113), 71 (100\%). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$: C, $78.51 ; \mathrm{H}, 11.98 \%$. Found: C, 78.55; H, 12.06\%.
anti-2-Methyl-1-(1-naphthyl)-3-buten-1-ol (43). The re action was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), 1-naphthylaldehyde ($342 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(343 \mathrm{mg}, 2.52 \mathrm{mmol}$) to give a crude residue, which was then purified by col umn chromatography on silica using $10 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ($490 \mathrm{mg}, 92 \%$) as a pale-yellow oil: IR (film) 3427 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.95-$ $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.01-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.27-$ $5.16(\mathrm{~m}, 3 \mathrm{H}), 2.86$ (app. sextet, J $=7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (broad s, $1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $140.16,138.33,133.81,130.91,128.86,128.03,125.79,125.37$, 125.19, 124.41, 123.51, 116.75, 74.67, 45.14, 17.09; m/z (EIMS) $212\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}\right.$ requires 212), 157 (100\%). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.87 ; \mathrm{H}, 7.60 \%$. Found: C, $84.68 ; \mathrm{H}$, 7.46\%.
anti-1-(2-Furyl)-2-methyl-3-buten-1-ol (44). The reaction was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), furfural ($209 \mu \mathrm{~L}, 2.52$ mmol), and ZnCl_{2} ($343 \mathrm{mg}, 2.52 \mathrm{mmol}$) to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{41}$ ($320 \mathrm{mg}, 84 \%$) as a colorless oil: IR (film) $3431 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 7.43-7.33(\mathrm{~m}, 1 \mathrm{H})$, $6.36-6.28(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.42$ $(\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.18($ broad s, 1H)), $0.93(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, (minor diastereomer) $\delta 7.28-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}$, $\mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) δ 154.96, 141.88, 139.93, 116.84, 110.01, 107.15, 71.28, 43.49, 16.14, (minor diastereomer) δ 155.29, 141.88, 139.93, 116.76, 109.96, 106.76, 71.28, 42.96, 14.99; m/z (EI-MS) 152 $\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\right.$ requires 152), 97 (100).
(40) (a) Widler, L.; Seebach, D. Helv. Chim. Acta. 1982, 65, 10851089. (b) Y amamoto, Y.; Y atagai, H.; I shihara, Y.; Maeda, N.; Maruyama, K. Tetrahedron 1984, 40, 2239-2246.
(41) Wuts, P. G. M.; Callen, G. R. Synth. Commun. 1986, 18331837. Wuts reports the threo compound to display a doublet at 1.06 ppm and the erythro compound at 0.94 ppm ; however, we believe due to comparison with other spectra this is in fact reversed.
anti-2-Phenyl-3-methyl-4-penten-2-ol (45). The reaction was carried out according to standard procedure C using 37 ($500 \mathrm{mg}, 2.52 \mathrm{mmol}$), BuLi (2.52 mmol), acetophenone (293 $\mu \mathrm{L}, 2.52 \mathrm{mmol})$, and $\mathrm{ZnCl}_{2}(343 \mathrm{mg}, 2.52 \mathrm{mmol})$ to give a crude residue, which was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{42}$ ($397 \mathrm{mg}, 90 \%$) as a colorless oil: IR (film) $3468 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 7.50-7.15$ $(\mathrm{m}, 5 \mathrm{H}), 5.92-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.45(\mathrm{~m}$, $1 \mathrm{H}), 1.99$ (broad s, 1H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, (minor diastereomer) $\delta 0.86$ (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) δ 146.99, 139.91, 127.83, $126.56,125.43,116.52,75.63,48.72,25.83,14.05$, (minor diastereomer) $\delta 126.37,125.15,116.22,51.39,30.93,17.23 ; \mathrm{m} / \mathrm{z}$ (EI-MS) $158\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}^{+}, 1 \%, \mathrm{C}_{12} \mathrm{H}_{14}\right.$ requires 158), 43 (100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; $\mathrm{H}, 9.15 \%$. F ound: $\mathrm{C}, 81.56$; H, 8.82\%.

3-tert-Butyl-2,2-dimethyl-4-ethylhex-5-en-3-ol (46). This was prepared in a manner similar to that for 37 using 1-chloropent-2-ene ($3.06 \mathrm{~g}, 29.3 \mathrm{mmol}$) and pivaldehyde (3.23 $\mathrm{mL}, 29.3 \mathrm{mmol}$). The crude residue was purified by column chromatography on silica using $2 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ($2.63 \mathrm{~g}, 74 \%$) as a colorless oil: IR (film) $3578 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95-5.74(\mathrm{~m}, 1 \mathrm{H})$, 5.24 (dd, J = 10.0, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dd, J $=17.0,2.2 \mathrm{~Hz}$, 1H), 2.63-2.49 (m, 1H), 2.18-1.98 (m, 1H), 1.70-1.43(m, 1H), $1.16(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 0.85$ (app. t, J $=7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.81,119.51,80.16,56.16,43.56,43.04$, 30.44, 29.63, 25.19, 14.22; m/z (EI-MS) 143 ($\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9}{ }^{+}, 1 \%$, $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}$ requires 143), 57 (100\%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}$, 79.18; H, 13.29. Found: C, 79.14; H, 13.56\%.
anti-2-Ethyl-1-phenyl-3-buten-1-ol (47). The reaction was carried out according to standard procedure C using 46 $(500 \mathrm{mg}, 2.35 \mathrm{mmol})$, BuLi (2.35 mmol), PhCHO ($239 \mu \mathrm{~L}, 2.35$ mmol), and ZnCl_{2} ($321 \mathrm{mg}, 2.35 \mathrm{mmol}$) to give a crude residue after stirring for 1 h at $-78^{\circ} \mathrm{C}$ and then warming to $-50^{\circ} \mathrm{C}$. This residue was then purified by column chromatography on silica using $20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ${ }^{43}$ ($378 \mathrm{mg}, 91 \%$) as a colorless oil: IR (film) $3412 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 7.40-7.21$ $(\mathrm{m}, 5 \mathrm{H}), 5.75-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.78$ (app. $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, (minor diastereomer) $\delta 5.58-5.38(\mathrm{~m}, 1 \mathrm{H})$, 5.11-4.94 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta 142.54,139.04,128.15,127.54,126.89,118.83,76.66$, 54.51, 23.32, 11.69, (minor diastereomer) $\delta 138.20,117.38$, 53.16, 22.54, 13.95; m/z (EI-MS) 107 (M-C ${ }_{5} \mathrm{H}_{9}{ }^{+}, 100 \%, \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$ requires 107), 79 (45\%). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15. Found: C, 81.72; H, 9.12\%.
anti-1-Cyclohexyl-2-ethyl-3-buten-1-ol (48). The reaction was carried out according to standard procedure C using 46 ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$), BuLi (2.35 mmol), cyclohexane carboxaldehyde ($286 \mu \mathrm{~L}, 2.35 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(321 \mathrm{mg}, 2.35 \mathrm{mmol}$) to give a crude residue after stirring for 2 h at $-78^{\circ} \mathrm{C}$ and then slowly warming to $-30^{\circ} \mathrm{C}$. The crude residue was then purified by column chromatography on silica using 15-20\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ${ }^{43}$ ($355 \mathrm{mg}, 83 \%$) as a colorless oil: IR (film) $3394 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}) $5.77-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.03(\mathrm{~m}, 2 \mathrm{H})$, 3.19 (app. t, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-0.95(\mathrm{~m}, 13 \mathrm{H}), 0.87$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.59,117.48$, 77.41, 48.45, 40.46, 29.68, 27.61, 26.48, 26.33, 26.06, 23.92, $11.84 ; \mathrm{m} / \mathrm{Z}$ (EI-MS) $113\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9}{ }^{+}, 19 \%, \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}\right.$ requires 113), 95 (100\%). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06 ; \mathrm{H}, 12.16$. Found: C, 78.88; H, 12.38\%.
anti-3,5-Diethyl-1-hepten-4-ol (49). The reaction was carried out according to standard procedure C using 46 (500 $\mathrm{mg}, 2.35 \mathrm{mmol}$), BuLi (2.35 mmol), 2-ethylbutyraldehyde (290 $\mu \mathrm{L}, 2.35 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(321 \mathrm{mg}, 2.35 \mathrm{mmol})$ to give a crude residue after 3 h at $-78{ }^{\circ} \mathrm{C}$, which was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ($325 \mathrm{mg}, 81 \%$) as a colorless oil: IR
(42) Sjöholm, R. E. Acta Chem. Scand. 1990, 44, 82-89.
(film) $3427 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77-5.55$ (m, 1H), 5.24-5.06 (m, 2H), 3.40 (dd, J $=6.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17$2.00(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.15(\mathrm{~m}, 7 \mathrm{H}), 0.96-0.83(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.19,117.84,73.95,49.25,42.88,23.81$, 22.01, 20.33, 11.75, 11.55, 11.07; m/z (EI-MS) $101\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9}{ }^{+}\right.$, $61 \%, \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$ requires 101), 59 (100\%). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 77.58 ; \mathrm{H}, 13.02$. Found: C, 77.76; $\mathrm{H}, 12.91 \%$.
(E)-2,2-Dimethylhex-4-en-3-one (50). t-BuM gCl (0.201 mol) in THF ($1.7 \mathrm{M}, 118 \mathrm{~mL}$) was added dropwise over 1 h to a stirred solution of $\mathrm{CuBr}(28.8 \mathrm{~g}, 0.20 \mathrm{~mol})$ and crotonic acid chloride ($21.0 \mathrm{~g}, 0.20 \mathrm{~mol}$) in THF (150 mL) at $-10^{\circ} \mathrm{C}$ under argon. Upon complete addition, the reaction was warmed slowly to room temperature and stirred for 15 min . The reaction mixture was poured onto ice (200 mL) and acidified with concentrated HCl . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (200 mL) and filtered. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and brine (150 mL), and then dried and concentrated under reduced pressure. The crude material was then distilled, 45-50 ${ }^{\circ} \mathrm{C}, 10 \mathrm{mmHg}$, to yield the ketone ${ }^{44}$ ($10.95 \mathrm{~g}, 43 \%$) as a col orless oil: IR (film) 1691, $1629 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.94 (dq, J = 15.3, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.51(\mathrm{dq}, \mathrm{J}=15.3,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.88$ (dd, J $=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.17,142.62,125.76,42.70,26.13,18.18$.

4-Benzyl-2,2-dimethyl-5-hexen-3-one (66). n-BuLi (21. 8 mmol) in pentane ($1.5 \mathrm{M}, 14.6 \mathrm{~mL}$) was added dropwise over 20 min to a stirred solution of $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NH}(3.08 \mathrm{~mL}, 21.8 \mathrm{mmol})$ in THF (20 mL) and HMPA (10 mL) at $-78^{\circ} \mathrm{C}$ under argon. U pon complete addition, the reaction was stirred for 15 min . A solution of the ketone $\mathbf{5 0}(2.5 \mathrm{~g}, 19.8 \mathrm{mmol})$ in THF (4 mL) was added dropwise over 10 min , and then the solution was stirred for 15 min . Benzyl bromide ($2.83 \mathrm{~mL}, 23.8 \mathrm{mmol}$) was then added dropwise over 2 min , and the reaction was stirred for a further $3 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was then added, and the reaction mixture was warmed to room temperature. The organics were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$, and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and brine (30 mL), dried, and then concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica using $1-1.5 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the ketone ($2.80 \mathrm{~g}, 65 \%$) as a colorless oil: IR (film) $1704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.07$ (m, $5 \mathrm{H}), 5.87-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.79(\mathrm{~m}, 1 \mathrm{H})$, 3.03 (dd, J = 13.3, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=13.3,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.93$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.99,139.40$, 137.41, 129.32, 128.17, 126.21, 117.10, 53.63, 44.97, 39.54, 25.71; m/z (EI-MS) $216.1513\left(\mathrm{M}^{+}, 7 \%, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\right.$ requires 216.1511), 57 (100\%).

4-Benzyl-3-(tert-butyl)-2,2-dimethyl-5-hexen-3-ol (51). A solution of ketone $\mathbf{6 6}(2.43 \mathrm{~g}, 11.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise over 15 min to a stirred solution of tertBuLi (22.5 mmol) in pentane ($1.5 \mathrm{M}, 15 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ under argon. The mixture was then stirred for 2 h at $-78^{\circ} \mathrm{C}$ and worked up as described for 37. The crude residue was then purified by column chromatography on silica using $1 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the alcohol ($2.63 \mathrm{~g}, 85 \%$) as a colorless oil: IR (film) $3568 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.12-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, \mathrm{J}=10.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=17.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=13.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16-3.01 (m, 1H), 2.80 (dd, J $=13.3,11.3 \mathrm{~Hz}$, 1H), 1.24 (s, 9 H), $1.21(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.16, 140.93, 128.98, 128.10, 125.76, 119.31, 80.52, 55.12, $43.65,43.40,38.70,30.40,30.00$; m/z (EI-MS) $143\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{11}{ }^{+}\right.$, $10 \%, \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}$ requires 143), 57 (100\%). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 83.15 ; \mathrm{H}, 11.01$. Found: C, $83.05 ; \mathrm{H}, 11.08 \%$.
anti-1-Phenyl-2-(phenylmethyl)-3-buten-1-ol (52). The reaction was carried out according to standard procedure C using 51 ($500 \mathrm{mg}, 1.82 \mathrm{mmol}$), BuLi (1.82 mmol), PhCHO (185 $\mu \mathrm{L}, 1.82 \mathrm{mmol})$, and $\mathrm{ZnCl}_{2}(249 \mathrm{mg}, 1.82 \mathrm{mmol})$ to give a crude residue after stirring for 3 h at $-78^{\circ} \mathrm{C}$. This residue was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the alcohol ${ }^{45}$ ($387 \mathrm{mg}, 89 \%$) as a colorless oil: IR (film) $3431 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.41-7.03(\mathrm{~m}, 10 \mathrm{H}), 5.82-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80-2.03 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.51, 139.92, 137.67, 129.08, 128.22, 128.10, 127.55, 126.64, 125.86, 118.81, 75.44, 53.73, 37.17; m/z (EI-MS) 132 (M-C77 ${ }_{6} \mathrm{O}^{+}, 31 \%, \mathrm{C}_{10} \mathrm{H}_{12}$ requires 132), 107 (100\%). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 85.67$; H, 7.61. Found: C, 85.72; H, 7.81\%.
anti-1-Cyclohexyl-2-(phenylmethyl)-3-buten-1-ol (53). The reaction was carried out according to standard procedure C using 51 ($500 \mathrm{mg}, 1.82 \mathrm{mmol}$), BuLi (1.82 mmol), cyclohexanecarboxaldehyde ($221 \mu \mathrm{~L}, 1.82 \mathrm{mmol}$), and ZnCl_{2} (249 mg , 1.82 mmol) to give a crude residue after stirring for 4 h at $-78{ }^{\circ} \mathrm{C}$. The crude residue was then purified by column chromatography on silica using $15 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the al cohol ($394 \mathrm{mg}, 88 \%$) as a colorless oil: IR (film) $3437 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.12$ (m, 5H), 5.90-5.70 (m, 1H), 5.12 (dd, J = 10.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (dd, J $=17.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (dd, J $=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93$2.49(\mathrm{~m}, 3 \mathrm{H}), 1.98-0.85(\mathrm{~m}, 11 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.33,137.46,129.17,128.15,125.82,117.61,76.52,47.54$, 40.89, 37.89, 29.17, 28.49, 26.37, 26.09, 25.93; m/z (EI-MS) 132 $\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}^{+}, 99 \%, \mathrm{C}_{10} \mathrm{H}_{12}\right.$ requires 132), 95 (100\%). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 83.55 ; \mathrm{H}, 9.90$. Found: C, 83.49; H, 9.65\%.
anti-5-Ethyl-3-(phenylmethyl)-1-hepten-4-ol (54). The reaction was carried out according to standard procedure C using 51 ($500 \mathrm{mg}, 1.82 \mathrm{mmol}$), BuLi (1.82 mmol), 2-ethylbutyraldehyde ($225 \mu \mathrm{~L}, 1.82 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}(249 \mathrm{mg}, 1.82$ mmol) to give a crude residue after 4 h at $-78^{\circ} \mathrm{C}$, which was then purified by column chromatography on silica using 15\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ($340 \mathrm{mg}, 80 \%$) as a colorless oil: IR (film) $3477 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.80-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=$ $10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00 (dd, J = 17.3, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44-3.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.92-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.15(\mathrm{~m}, 5 \mathrm{H}), 0.94-0.75$ (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.24,137.96,129.18$, 128.15, 125.87, 117.96, 73.39, 48.37, 43.16, 37.93, 21.42, 20.48, 11.22, 10.43; m/z (EI-MS) 143 ($\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{5}{ }^{+}, 2 \%, \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}$ requires 143), 132 (100\%). Anal. Cal cd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 82.70 ; \mathrm{H}, 10.41$. Found: C, 82.54; H, 10.68\%.

3-tert-Butyl-2, 2,-dimethyInon-5-yn-3-ol (56a). 1-Pentyne ($1.26 \mathrm{~mL}, 12.8 \mathrm{mmol}$) was added dropwise over 5 min to a stirred solution of BuLi (12.8 mmol) in pentane ($1.6 \mathrm{M}, 8.0$ mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting mixture was stirred for 15 min , and then the solvents were removed under reduced pressure. HMPA (5 mL) was added followed by a solution of 2, 2-di(tert-butyl) oxirane 55 ($1.0 \mathrm{~g}, 6.4 \mathrm{mmol}$) in HMPA (2 mL). The reaction was stirred at room temperature for 20 h and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 $\mathrm{mL})$. This was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and then brine (20 mL), dried, and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica using 2\% $\mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ($1.21 \mathrm{~g}, 84 \%$) as a colorless oil: IR (film) $3544 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.57(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}$, 2 H), $2.42(\mathrm{~s}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.52$ (app. sextet, J $=7$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.09 (s, 18H), $0.97(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 85.54,77.84,77.25,43.30,28.78,25.63,22.30$, 20.86, 13.53; m/z (EI-MS) $224\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}\right.$ requires 224), 57 (100\%).

3-tert-Butyl-2,2,-dimethyldec-5-yn-3-ol (56b). The reaction was carried out as described for 56a using 1-hexyne (2.94 $\mathrm{mL}, 25.6 \mathrm{mmol}$) and 2,2-di (tert-butyl)oxirane 55 ($2.1 \mathrm{~g}, 12.8$ mmol) to give a crude residue, which was purified by column chromatography on silica using $2 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give the alcohol ($2.17 \mathrm{~g}, 65 \%$) as a colorless oil: IR (film) $3544 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.56(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}$, 2 H), $2.31(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.08$

[^11]($\mathrm{s}, 18 \mathrm{H}$), $0.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 85.65, 77.63, 77.25, 42.29, 30.94, 28.78, 25.62, 21.97, 18.52, 13.56; m/z (EI-MS) $181\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}+, 2 \%, \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}\right.$ requires 181), 57 (100\%). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 80.60 ; \mathrm{H}, 12.68 \%$. Found: C, 80.40; H, 13.05\%.
(Z)-3-tert-B utyl-2, 2,-dimethylnon-5-en-3-ol (57). 5\% palIadium on $\mathrm{BaSO}_{4}(50 \mathrm{mg})$ was added in one portion to a stirred solution of $\mathbf{5 6 a}$ ($500 \mathrm{mg}, 2.23 \mathrm{mmol}$) in pyridine (5 mL). The resulting mixture was degassed 3 times, and then an atmosphere of H_{2} was introduced. The reaction was stirred overnight and then diluted with pentane (100 mL) and filtered through a plug of silica. The silica plug was washed with $E t_{2} \mathrm{O}$ (100 mL). The combined organic fractions were washed with aqueous CuSO_{4} solution $(5 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and brine (50 mL) and then dried and concentrated under reduced pressure to give the homoallylic alcohol ($503 \mathrm{mg}, 99 \%$) as a colorless oil: IR (film) $3565 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68-5.41(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (app. q, J $=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H})$, $0.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.39$, 127.19, 79.64, 42.45, 31.59, 29.55, 28.95, 22.69, 13.89; m/z (EIMS) $169\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 5 \%, \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}\right.$ requires 169), 57 (100\%). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}$: C, 79.58; H, 13.36\%. Found: C, 79.33; H, 13.27\%.
(E)-3-tert-B utyl-2, 2,-dimethyldec-5-en-3-ol (58). A solution of $\mathbf{5 6 b}(325 \mathrm{mg}, 1.36 \mathrm{mmol})$ in THF (3 mL) was added dropwise over 5 min to a stirred mixture of $\mathrm{LiAlH}_{4}(207 \mathrm{mg}$, 5.4 mmol) in THF (8 mL) at room temperature under argon. U pon complete addition, the reaction was heated at reflux for 24 h and then cooled to room temperature. The reaction was quenched by careful addition of EtOAc (5 mL) and then 10\% HCl solution (25 mL) and stirred for 15 min . The organics were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and then the combined extracts were washed with brine (20 mL), dried, and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica using $2 \% \mathrm{Et}_{2} \mathrm{O}-$ hexanes as an eluent to give the alcohol ($313 \mathrm{mg}, 96 \%$) as a colorless oil: IR (film) $3556 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.58-5.45(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H})$, $1.68(\mathrm{~s}, 1 \mathrm{H}), 1.43-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.18,127.89,78.48$, 42.28, 36.50, 32.49, 31.64, 28.81, 22.21, 13.91; m/z (EI-MS) 183 $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 6 \%, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}\right.$ requires 183), 57 (100\%). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 79.93$; $\mathrm{H}, 13.41 \%$. Found: C, 79.58; H, 13.36\%.
(E)- and (Z)-1-Phenyl-3-hepten-1-ol (59). The reaction was carried out according to standard procedure C using 57 ($452 \mathrm{mg}, 2.0 \mathrm{mmol}$), BuLi (2.0 mmol), $\mathrm{PhCHO}(202 \mu \mathrm{~L}, 2.0$ $\mathrm{mmol})$, and ZnCl_{2} ($272 \mathrm{mg}, 2.0 \mathrm{mmol}$). After warming to room temperature, the reaction was stirred for 80 h to give a crude residue, which was then purified by column chromatography on silica using $2-10 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give first recovered starting material ($180 \mathrm{mg}, 40 \%$) and then the al cohol ${ }^{46}$ ($197 \mathrm{mg}, 52 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.65-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.59(\mathrm{~m}$,
$1 \mathrm{H}), 2.60-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.22$ (broad s, 1H), 2.07-1.92(m,2H), $1.48-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)((Z)$ isomer $) \delta 144.07,133.40,128.28,127.39,125.80$, 124.79, 73.86, 37.23, 29.38, 22.64, 13.70, ((E)isomer) $\delta 143.99$, 134.83, 127.30, 125.56, 73.44, 42.74, 34.65, 22.45, 13.58.
(E)- and (Z)-1-Phenyl-3-octen-1-ol (60). The reaction was carried out according to standard procedure C using 58 (265 $\mathrm{mg}, 1.1 \mathrm{mmol}$), BuLi (1.1 mmol), PhCHO ($113 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), and ZnCl_{2} ($151 \mathrm{mg}, 1.1 \mathrm{mmol}$). After warming to room temperature, the reaction was stirred for 12 h to give a crude residue, which was then purified by column chromatography on silica using $2-20 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an eluent to give first recovered starting material ($195 \mathrm{mg}, 74 \%$) and then the alcohol ${ }^{47}$ ($52 \mathrm{mg}, 23 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.65-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.58(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.14(\mathrm{~m}, 4 \mathrm{H})$, 0.97-0.80 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}) ((Z)-isomer) δ 144.07, 133.67, 128.29, 127.41, 125.81, 124.56, 73.87, 37.23, 31.68, 27.07, 22.28, 13.91, ((E)-isomer) $\delta 143.99,135.10,128.27$, $127.31,125.77,125.35,73.42,42.76,32.26,31.49,22.12,13.87$.

3-(tert-Butyl)-2, 2, 6-trimethyl-5-hepten-3-ol (61). A solution of 2,2,6-trimethylhept-5-en-3-one ($4.10 \mathrm{~g}, 26.6 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise over 10 min to a stirred solution of tert-BuLi (40 mmol) in pentane ($1.48 \mathrm{M}, 27 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ under argon. The mixture was then stirred for 1 h at $-78^{\circ} \mathrm{C}$ and worked up as described for 37. The crude residue was then purified by column chromatography on silica using $2-5 \% \mathrm{Et}_{2} \mathrm{O}$-hexanes as an el uent to give the al cohol (334 mg , 6%) as a colorless oil: IR (film) $3633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.38-5.26(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 134.24, 121.94, 79.66, 42.37, 32.43, 28.99, 26.48, 18.05; m/z (EI-MS) $155\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 7 \%, \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}\right.$ requires 155), 57 (100\%).

Acknowledgment. The authors thank the DFG (SF B 260 and Leibniz program) for generous financial support and the Royal Society for an award (to P.J.) under the European Science Exchange Program.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $42,43,46,49,51,53,54,56 a$, 56b, 57, 58, 61, and 66 (34 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O981623M
(46) Kanagawa, Y.; N ishiyama, Y.; Ishii, Y. J . Org. Chem. 1992, 57, 6988-6991.
(47) Negishi, E.-I.; Baba, S.; King, A. O. J. Chem. Soc., Chem. Commun. 1976, 17-18.

[^0]: (1) (a) Roush, W. R. In ComprehensiveOrganic Synthesis; Trost, B. M., Fleming, I., H eathcock, C. H., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1-53. (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 22072293.
 (2) Buse, C. T.; Heathcock, C. H. Tetrahedron Lett. 1978, 1685-1688.
 (3) Hoffmann, R. W.; Zei β, H.-J . Angew. Chem. Int. Ed. Engl. 1979, 18, 306.
 (4) Y amamoto, Y.; Y atagai, H.; Naruta, Y.; Maruyama, K. J . Am. Chem. Soc. 1980, 102, 7107-7109.

[^1]: (5) F or reaction of Grignard reagents, see: (a) Bensker, R. A.; Siklosi, M. P. J. Org. Chem. 1976, 41, 3212-3213. (b) Bensker, R. A.; Siklosi, M. P.; Mozdzen, E. C. J. Am. Chem. Soc. 1978, 100, 21342139. (c) Bensker, R. A.; Y oung, W. G.; Broxterman, W. E.; J ones, D. A.; Piaseczynski, S. J. J. Am. Chem. Soc. 1969, 91, 132-137. (d) Barbot, F.; Miginiac, P. Bull. Chim. Soc. Fr. 1977, 113-116.
 (6) F or reaction of organolithiums, see: (a) Gerard, F.; Miginiac, P. Bull. Chim. Soc. Fr. 1974, 2527-2533; Gerard, F.; Miginiac, P. Bull. Chim. Soc. Fr. 1974, 1924-1930.
 (7) For reaction of organozincs, see: (a) Barbot, F.; Miginiac, P. Tetrahedron Lett. 1975, 3829-3832. (b) Miginiac, P.; Bouchoule, C. Bull. Chim. Soc. Fr. 1968, 4675-4676. (c) Barbot, F.; Miginiac, P. J. Organomet. Chem. 1977, 132, 445-454. (d) Bocoum, A.; Savoia, D.; Umani-Ronchi, A. J . Chem. Soc., Chem. Commun. 1993, 1542-1544.
 (8) F or a preliminary communication of this work, see: (a) J ones, P.; Millot, N.; K nochel, P.J . Chem. Soc., Chem. Commun. 1998, 24052406. (b) J ones, P.; Knochel, P J. Chem. Soc., Chem. Commun. 1998, 2407-2408.

[^2]: (9) F or further reactions of allylzinc reagents, see: (a) K nochel, P.; Almena Perea, J. J .; J ones, P. Tetrahedron 1998, 54, 8275-8319. (b) K nochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117-2188. (c) K nochel, P.; Normant, J. F. J. Organomet. Chem. 1986, 309, 1-23.

[^3]: (10) Shimizu, M.; Kimura, M.; Tanaka, S.; Tamura, Y. Tetrahedron Lett. 1998, 39, 609-612.
 (11) Diastereomeric excesses were determined by ${ }^{1} \mathrm{H}$ NMR.

[^4]: (13) Bis(3-methylallyl)zinc is known to be a rapid isomerizing system at room temperature, hence explaining the $1: 1$ anti/syn selectivity in additions to aldehydes. Benn, R.; H offmann, E. G.; Lehmkuhl, H.; Nehl, H. J. Organomet. Chem. 1978, 146, 103-112.

[^5]: (14) A patent has been filed with Chemetall GmbH (Frankfurt).
 (15) During the preparation of this manuscript Nokami reported an allyl-transfer reaction catalyzed by tin(II) triflate; see, Nokami, J.; Yoshizane, K.; M atsuura, H.; Sumida, S. J . Am. Chem. Soc. 1998, 120, 6609-6610.
 (16) Katzenellenbogen, J. A.; Lenox, R. S. J. Org. Chem. 1973, 38, 326-335.

[^6]: (17) Pepperman, A. B.; Siddall, T. H. J . Org. Chem. 1975, 40, 20532056.
 (18) Greenlee, W. J. J . Org. Chem. 1984, 49, 2632-2634.
 (19) Wasserman, H. H.; Duzer, J. H.; Vu, C. B. Tetrahedron Lett. 1990, 31, 1609-1612.
 (20) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749-1760.
 (21) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952-8965.
 (22) Ongoka, P.; Mauze, B.; Miginiac, L. J . Organomet. Chem. 1987, 322, 131-139.
 (23) De Kimpe, N.; De Buyck, L.; Verhé, R.; Schamp, N. Tetrahedron 1984, 40, 3291-3294.
 (24) Bretsch, W.; Rei β ig, H.-U. Liebigs Ann. Chem. 1987, 175-178.
 (25) Araki, S.; Ito, H.; Butsugan, Y. J . Organomet. Chem. 1988, 347, 5-9.
 (26) Antonsson, T.; Moberg, C.; Tottie, L.; Heumann, A. J. Org. Chem. 1989, 54, 4914-4929.
 (27) Davis, A. P.; J aspars, M. J . Chem. Soc., Perkin Trans. 1 1992, 2111-2118.

[^7]: (28) Heathcock, C. H.; Kiyooka, S.; Blumenkopf, H. J. Org. Chem. 1984, 49, 4214-4223.
 (29) Ranu, B. C.; Majee, A.; Das, A. R. Tetrahedron Lett. 1995, 36, 4885-4888.

[^8]: (30) Sarangi, C.; Nayak, A.; Nanda, B.; Das, N. B.; Sharma, R. P. Tetrahedron Lett. 1995, 36, 7119-7122.
 (31) Curran, D. P.; Kim, B. H. Synthesis 1986, 312-315.
 (32) Baruah, B.; Boruah, A.; Prajapati, D.; Sandhu, J . S. Tetrahedron Lett. 1996, 37, 9087-9098.
 (33) Hamana, H.; Sugasawa, T. Chem. Lett. 1985, 921-924.
 (34) Wang, J.; Zhang, Y.; Bao, W. Synth. Commun. 1996, 26, 24732478.

[^9]: (35) Sain, B.; Prajapati, D.; Sandhu, J. S. Tetrahedron Lett. 1992, 33, 4795-4798.
 (36) Hoffmann, R. W.; Eichler, G.; Endesfelder, A. Liebigs Ann. Chem. 1983, 2000-2007.
 (37) Tanaka, H.; Inoue, K.; Pokorski, U.; Taniguchi, M.; Torii, S. Tetrahedron Lett. 1990, 31, 3023-3026.

[^10]: (38) Naruta, Y.; N ishigaichi, Y.; Maruyama, K. J . Org. Chem. 1991, 56, 2011-2017.
 (39) K obayashi, S.; Nishio, K. J . Org. Chem. 1994, 59, 6620-6628.

[^11]: (43) Visser, M. S.; Hoveyda, A. H. Tetrahedron 1995, 51, 4383-4394.
 (44) Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 132-157.
 (45) Takeda, T.; Miura, I.; Horikawa, Y.; Fujiwara, T. Tetrahedron Lett. 1995, 36, 1495-1498.

